660 research outputs found

    Probing gaseous halos of galaxies with radio jets

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOContext. Gaseous halos play a key role in understanding inflow, feedback, and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains, and hydrostatic halos at certain galaxy masses. Since luminosities of radio AGN are sensitive to halo densities, any significant transition would be expected to show up in the radio luminosities of large samples of galaxies. The LOw Frequency ARray (LOFAR) Two-Metre Sky Survey (LoTSS) has identified a galaxy stellar mass scale, 10 11 M ⊙, above which the radio luminosities increase disproportionately. Aims. We investigate if radio luminosities of galaxies, especially the marked rise at galaxy masses around 10 11 M ⊙, can be explained with standard assumptions regarding jet powers, scaling between black hole mass and galaxy mass, and gaseous halos. Methods. Based on observational data and theoretical constraints, we developed models for the radio luminosity of radio AGN in halos under infall, galactic wind, and hydrostatic conditions. We compared these models to LoTSS data for a large sample of galaxies in the mass range between 10 8.5 M ⊙ and 10 12 M ⊙. Results. Under the assumption that the same characteristic upper limit to jet powers known from high galaxy masses holds at all masses, we find the maximum radio luminosities for the hydrostatic gas halos to lie close to the upper envelope of the distribution of the LOFAR data. The marked rise in radio luminosity at 10 11 M ⊙ is matched in our model and is related to a significant change in halo gas density around this galaxy mass, which is a consequence of lower cooling rates at a higher virial temperature. Wind and infall models overpredict the radio luminosities for small galaxy masses and have no particular steepening of the run of the radio luminosities predicted at any galaxy mass. Conclusions. Radio AGN could have the same characteristic Eddington-scaled upper limit to jet powers in galaxies of all masses in the sample if the galaxies have hydrostatic gas halos in phases when radio AGN are active. We find no evidence of a change of the type of galaxy halo with the galaxy mass. Galactic winds and quasi-spherical cosmological inflow phases cannot frequently occur at the same time as powerful jet episodes unless the jet properties in these phases are significantly different from what we assumed in our model.Peer reviewedFinal Accepted Versio

    Magnetic fields in galaxies: I. Radio disks in local late-type galaxies

    Full text link
    We develop an analytical model to follow the cosmological evolution of magnetic fields in disk galaxies. Our assumption is that fields are amplified from a small seed field via magnetohydrodynamical (MHD) turbulence. We further assume that this process is fast compared to other relevant timescales, and occurs principally in the cold disk gas. We follow the turbulent energy density using the Shabala & Alexander (2009) galaxy formation and evolution model. Three processes are important to the turbulent energy budget: infall of cool gas onto the disk and supernova feedback increase the turbulence; while star formation removes gas and hence turbulent energy from the cold gas. Finally, we assume that field energy is continuously transferred from the incoherent random field into an ordered field by differential galactic rotation. Model predictions are compared with observations of local late type galaxies by Fitt & Alexander (1993) and Shabala et al. (2008). The model reproduces observed magnetic field strengths and luminosities in low and intermediate-mass galaxies. These quantities are overpredicted in the most massive hosts, suggesting that inclusion of gas ejection by powerful AGNs is necessary in order to quench gas cooling and reconcile the predicted and observed magnetic field strengths.Comment: 10 pages, 8 figures; MNRAS in pres

    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels

    Get PDF
    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0–500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na+, K+, and Cl–) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K+ and lower Na+ levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K+ progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K+ in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na+ content, suggesting either a very strict control of xylem Na+ loading or an efficient Na+ removal from leaves. A very strong correlation between NaCl-induced K+ and H+ fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H+-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K+ leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na+ sequestration, control of Na+ and K+ xylem loading, and their transport to the shoot

    A root's ability to retain K+ correlates with salt tolerance in wheat

    Get PDF
    Most work on wheat breeding for salt tolerance has focused mainly on excluding Na+ from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na+ content and wheat salt tolerance. Thus, it appears that excluding Na+ by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K+ may be such a trait, and whether our previous findings for barley can be extrapolated to species following a ‘salt exclusion’ strategy. NaCl-induced kinetics of K+ flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K+ flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K+ homeostasis in plant salt tolerance and suggests that using NaCl-induced K+ flux measurements as a physiological ‘marker’ for salt tolerance may benefit wheat-breeding programmes

    Calcium efflux systems in stress signaling and adaptation in plants

    Get PDF
    Transient cytosolic calcium ([Ca(2+)](cyt)) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca(2+)](cyt) elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium “signature” that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca(2+) influx mechanisms to shaping [Ca(2+)](cyt) signatures, restoration of the basal [Ca(2+)](cyt) levels is impossible without both cytosolic Ca(2+) buffering and efficient Ca(2+) efflux mechanisms removing excess Ca(2+) from cytosol, to reload Ca(2+) stores and to terminate Ca(2+) signaling. This is the topic of the current review. The molecular identity of two major types of Ca(2+) efflux systems, Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca(2+) efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers in shaping [Ca(2+)](cyt) signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca(2+)-permeable channels and efflux systems) taking into account the cytosolic Ca(2+) buffering. It is concluded that physiologically relevant variations in the activity of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca(2+)](cyt) signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment

    Extracellular spermine triggers a rapid intracellular phosphatidic acid response in arabidopsis, involving PLDδ activation and stimulating ion flux

    Get PDF
    Polyamines, such as putrescine (Put), spermidine (Spd), and spermine (Spm), are low-molecular-weight polycationic molecules found in all living organisms. Despite the fact that they have been implicated in various important developmental and adaptative processes, their mode of action is still largely unclear. Here, we report that Put, Spd, and Spm trigger a rapid increase in the signaling lipid, phosphatidic acid (PA) in Arabidopsis seedlings but also mature leaves. Using time-course and dose-response experiments, Spm was found to be the most effective; promoting PA responses at physiological (low μM) concentrations. In seedlings, the increase of PA occurred mainly in the root and partly involved the plasma membrane polyamine-uptake transporter (PUT), RMV1. Using a differential 32Pi-labeling strategy combined with transphosphatidylation assays and T-DNA insertion mutants, we found that phospholipase D (PLD), and in particular PLDδ was the main contributor of the increase in PA. Measuring non-invasive ion fluxes (MIFE) across the root plasma membrane of wild type and pldδ-mutant seedlings, revealed that the formation of PA is linked to a gradual- and transient efflux of K+. Potential mechanisms of how PLDδ and the increase of PA are involved in polyamine function is discussed
    corecore